Advertisement
Advertisement
Lanoxin

Lanoxin Mechanism of Action

digoxin

Manufacturer:

Aspen

Distributor:

Zuellig Pharma
Full Prescribing Info
Action
Pharmacotherapeutic group: Cardiac therapy, Cardiac glycosides. ATC Code: C01AA05.
Pharmacology: Pharmacodynamics: Mechanism of Action: Digoxin increases contractility of the myocardium by direct activity. This effect is proportional to dose in the lower range and some effect is achieved with quite low dosing; it occurs even in normal myocardium although it is then entirely without physiological benefit. The primary action of digoxin is specifically to inhibit adenosine triphosphatase, and thus sodium-potassium (Na+-K+) exchange activity, the altered ionic distribution across the membrane resulting in an augmented calcium ion influx and thus an increase in the availability of calcium at the time of excitation-contraction coupling. The potency of digoxin may therefore appear considerably enhanced when the extracellular potassium concentration is low, with hyperkalaemia having the opposite effect.
Digoxin exerts the same fundamental effect of inhibition of the Na+-K+ exchange mechanism on cells of the autonomic nervous system, stimulating them to exert indirect cardiac activity. Increases in efferent vagal impulses result in reduced sympathetic tone and diminished impulse conduction rate through the atria and atrioventricular node. Thus, the major beneficial effect of digoxin is reduction of ventricular rate.
Pharmacodynamic Effects: Indirect cardiac contractility changes also result from changes in venous compliance brought about by the altered autonomic activity and by direct venous stimulation. The interplay between direct and indirect activity governs the total circulatory response, which is not identical for all subjects. In the presence of certain supraventricular arrhythmias, the neurogenically mediated slowing of AV conduction is paramount.
The degree of neurohormonal activation occurring in patients with heart failure is associated with clinical deterioration and an increased risk of death. Digoxin reduces activation of both the sympathetic nervous system and the (renin-angiotensin) system independently of its inotropic actions, and may thus favourably influence survival. Whether this is achieved via direct sympathoinhibitory effects or by re-sensitizing baroreflex mechanisms remains unclear.
Pharmacokinetics: Absorption: Upon oral administration, digoxin is absorbed from the stomach and upper part of the small intestine. When digoxin is taken after meals, the rate of absorption is slowed, but the total amount of digoxin absorbed is usually unchanged. When taken with meals high in fibre, however, the amount absorbed from an oral dose may be reduced.
Using the oral route the onset of effect occurs in 0.5 to 2 hours and reaches its maximum at 2 to 6 hours. The bioavailability of orally administered digoxin is approximately 63% in tablet form and 75% as paediatric elixir.
Injection: Intravenous administration of a loading dose produces an appreciable pharmacological effect within 5 to 30 mins; this reaches a maximum in 1 to 5 hours.
Using the oral route the onset of effect occurs in 0.5 to 2 hours and reaches its maximum at 2 to 6 hours. The bioavailability of orally administered digoxin is approximately 63 % in tablet form and 75 % as oral solution.
Distribution: The initial distribution of digoxin from the central to the peripheral compartment generally lasts from 6 to 8 hours. This is followed by a more gradual decline in serum digoxin concentration, which is dependent upon digoxin elimination from the body. The volume of distribution is large (Vdss = 510 litres in healthy volunteers), indicating digoxin to be extensively bound to body tissues. The highest digoxin concentrations are seen in the heart, liver and kidney, that in the heart averaging 30-fold that in the systemic circulation. Although the concentration in skeletal muscle is far lower, this store cannot be overlooked since skeletal muscle represents 40% of total body weight. Of the small proportion of digoxin circulating in plasma, approximately 25% is bound to protein.
Metabolism: The main metabolites of digoxin are dihydrodigoxin and digoxygenin.
Elimination: The major route of elimination is renal excretion of the unchanged drug.
Digoxin is a substrate for P-glycoprotein. As an efflux protein on the apical membrane of enterocytes, P-glycoprotein may limit the absorption of digoxin. P-glycoprotein in renal proximal tubules appears to be an important factor in the renal elimination of digoxin (see Interactions).
Following intravenous administration to healthy volunteers, between 60 and 75% of a digoxin dose is recovered unchanged in the urine over a 6 day follow-up period. Total body clearance of digoxin has been shown to be directly related to renal function, and percent daily loss is thus a function of creatinine clearance, which in turn may be estimated from a stable serum creatinine. The total and renal clearances of digoxin have been found to be 193 ± 25 ml/min and 152 ± 24 ml/min in a healthy control population.
In a small percentage of individuals, orally administered digoxin is converted to cardioinactive reduction products (digoxin reduction products or DRPs) by colonic bacteria in the gastrointestinal tract. In these subjects over 40% of the dose may be excreted as DRPs in the urine. Renal clearances of the two main metabolites, dihydrodigoxin and digoxygenin, have been found to be 79 ± 13 ml/min and 100 ± 26 ml/min, respectively.
In the majority of cases however, the major route of digoxin elimination is renal excretion of the unchanged drug.
The terminal elimination half-life of digoxin in patients with normal renal function is 30 to 40 hours.
Since most of the drug is bound to the tissues rather than circulating in the blood, digoxin is not effectively removed from the body during cardiopulmonary bypass. Furthermore, only about 3% of a digoxin dose is removed from the body during five hours of haemodialysis.
Special Patient Populations: Neonates, infants and children up to 10 years of age: In the newborn period, renal clearance of digoxin is diminished and suitable dosage adjustments must be observed. This is especially pronounced in the premature infant since renal clearance reflects maturation of renal function. Digoxin clearance has been found to be 65.6 ± 30 ml/min/1.73 m2 at 3 months, compared to only 32 ± 7 ml/min/1.73 m2 at 1 week. Beyond the immediate newborn period, children generally require proportionally larger doses than adults on the basis of body weight and body surface area.
Renal Impairment: The terminal elimination half-life of digoxin is prolonged in patients with impaired renal function, and in anuric patients may be of the order of 100 hours.
Toxicology: Preclinical safety data: Carcinogenesis, mutagenesis: Digoxin showed no genotoxic potential in in vitro studies (Ames test and mouse lymphoma). No data are available on the carcinogenic potential of digoxin.
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement