Advertisement
Advertisement
Tafnext

Tafnext Mechanism of Action

tenofovir alafenamide

Manufacturer:

Hetero Labs

Distributor:

Camber
Full Prescribing Info
Action
Pharmacology: Mechanism of Action: Tenofovir alafenamide is an antiviral drug against the hepatitis B virus (see Pharmacology: Microbiology under Actions).
Pharmacodynamics: Cardiac Electrophysiology: In a thorough QT/QTc study in 48 healthy subjects, tenofovir alafenamide at the recommended dose or at a dose 5 times the recommended dose did not affect the QT/QTc interval and did not prolong the PR interval.
Pharmacokinetics: The pharmacokinetic properties of Tenofovir Alafenamide are provided in Table 1. The multiple dose PK parameters of tenofovir alafenamide and its metabolite tenofovir are provided in Table 2. (See Tables 1 and 2).

Click on icon to see table/diagram/image


Click on icon to see table/diagram/image

Specific Populations: Geriatric Patients, Race, and Gender: Limited data in subjects aged 65 years and over suggest a lack of clinically relevant differences in tenofovir alafenamide or tenofovir pharmacokinetics. No clinically relevant differences in tenofovir alafenamide or tenofovir pharmacokinetics due to race or gender have been identified (see Precautions).
Patients with Renal Impairment: In a Phase 1, open-label study, tenofovir alafenamide and tenofovir systemic exposures (AUCinf) were evaluated in subjects with severe renal impairment and in subjects with normal renal function (Table 3). In an open-label trial of elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide 150/150/200/10 mg, tenofovir alafenamide and tenofovir AUC were evaluated in a subset of virologically suppressed HIV-1 infected subjects with ESRD receiving chronic hemodialysis (Table 3). In a Phase 2, open-label trial, tenofovir alafenamide and tenofovir AUC were evaluated in a subset of virologically suppressed HBV-infected subjects with ESRD receiving chronic hemodialysis (Table 3) (see Precautions). The pharmacokinetics of tenofovir alafenamide were similar among subjects with normal renal function, subjects with severe renal impairment, and subjects with ESRD receiving chronic hemodialysis. Relative to those with normal renal function, increased tenofovir exposures were observed in subjects with severe renal impairment and subjects with ESRD receiving chronic hemodialysis. Within the chronic hemodialysis population, increased tenofovir exposures were observed in subjects with HBV relative to those with HIV. (See Table 3).

Click on icon to see table/diagram/image

Patients with Hepatic Impairment: Tenofovir alafenamide and tenofovir pharmacokinetics are similar in subjects with mild (Child-Pugh Class A) hepatic impairment and in subjects with normal hepatic function.
HIV and/or Hepatitis C Virus Coinfection: The pharmacokinetics of tenofovir alafenamide have not been fully evaluated in subjects coinfected with HIV and/or hepatitis C virus.
Drug Interaction Studies: (See Interactions).
The effects of coadministered drugs on the exposure of tenofovir alafenamide are shown in Table 4. The effects of tenofovir alafenamide on the exposure of coadministered drugs are shown in Table 5 (For information regarding clinical recommendations, see Interactions). Information regarding potential drug-drug interactions with HIV antiretrovirals is not provided (see the prescribing information for emtricitabine/tenofovir alafenamide for interactions with HIV antiretrovirals). (See Tables 4 and 5).

Click on icon to see table/diagram/image


Click on icon to see table/diagram/image

Microbiology: Mechanism of Action: Tenofovir alafenamide is a phosphonamidate prodrug of tenofovir (2'-deoxyadenosine monophosphate analog). Tenofovir alafenamide as a lipophilic cell-permeant compound enters primary hepatocytes by passive diffusion and by the hepatic uptake transporters OATP1B1 and OATP1B3. Tenofovir alafenamide is then converted to tenofovir through hydrolysis primarily by carboxylesterase 1 (CES1) in primary hepatocytes. Intracellular tenofovir is subsequently phosphorylated by cellular kinases to the pharmacologically active metabolite tenofovir diphosphate. Tenofovir diphosphate inhibits HBV replication through incorporation into viral DNA by the HBV reverse transcriptase, which results in DNA chain-termination.
Tenofovir diphosphate is a weak inhibitor of mammalian DNA polymerases that include mitochondrial DNA polymerase γ and there is no evidence of toxicity to mitochondria in cell culture.
Antiviral Activity in Cell Culture: The antiviral activity of tenofovir alafenamide was assessed in a transient transfection assay using HepG2 cells against a panel of HBV clinical isolates representing genotypes A-H. The EC50 (50% effective concentration) values for tenofovir alafenamide ranged from 34.7 to 134.4 nM, with an overall mean EC50 value of 86.6 nM. The CC50 (50% cytotoxicity concentration) values in HepG2 cells were greater than 44,400 nM. In cell culture combination antiviral activity studies of tenofovir with the HBV nucleoside reverse transcriptase inhibitors entecavir, lamivudine, and telbivudine, no antagonistic activity was observed.
Resistance in Clinical Trials: Genotypic resistance analysis was performed on paired baseline and on-treatment HBV isolates for subjects who either experienced virologic breakthrough (2 consecutive visits with HBV DNA greater than or equal to 69 IU/mL [400 copies/mL] after having been less than 69 IU/mL, or 1.0-log10 or greater increase in HBV DNA from nadir) through Week 48, or had HBV DNA greater than or equal to 69 IU/mL at early discontinuation at or after Week 24.
In a pooled analysis of treatment-naïve and treatment-experienced subjects receiving Tenofovir Alafenamide in Trials 108 and 110, treatment-emergent amino acid substitutions in the HBV reverse transcriptase domain, all occurring at polymorphic positions, were observed in some HBV isolates evaluated (5/20); however, no specific substitutions occurred at a sufficient frequency to be associated with resistance toTenofovir Alafenamide.
In virologically suppressed subjects receiving Tenofovir Alafenamide in Trial 4018, no subjects qualified for resistance analysis through 48 weeks of Tenofovir Alafenamide treatment.
Cross-Resistance: The antiviral activity of tenofovir alafenamide was evaluated against a panel of isolates containing substitutions associated with HBV nucleoside reverse transcriptase inhibitor resistance in a transient transfection assay using HepG2 cells. HBV isolates expressing the lamivudine resistance-associated substitutions rtM204V/I (±rtL180M±rtV173L) and expressing the entecavir resistance-associated substitutions rtT184G, rtS202G, or rtM250V in the presence of rtL180M and rtM204V showed less than 2-fold reduced susceptibility (within the inter-assay variability) to tenofovir alafenamide. HBV isolates expressing the rtA181T, rtA181V, or rtN236T single substitutions associated with resistance to adefovir also had less than 2-fold changes in EC50 values; however, the HBV isolate expressing the rtA181V plus rtN236T double substitutions exhibited reduced susceptibility (3.7-fold) to tenofovir alafenamide. The clinical relevance of these substitutions is not known.
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement